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Abstract: Computing architectures are being assembled that extend concurrent engineering

practices by providing more efficient execution and collaboration on distributed, heterogeneous

computing networks. Built on the successes of initial architectures, requirements for a next-

generation design computing infrastructure can be developed. These requirements concentrate on

those needed by a designer in decision-making processes from product conception to recycling and

can be categorized in two areas: design process and design information management. A designer

both designs and executes design processes throughout design time to achieve better product and

process capabilities while expending fewer resources. In order to accomplish this, information, or

more appropriately design knowledge, needs to be adequately managed during product and process

decomposition as well as recomposition. A foundation has been laid that captures these

requirements in a design architecture called DREAMS (Developing Robust Engineering Analysis

Models and Specifications). In addition, a computing infrastructure, called IMAGE (Intelligent

Multidisciplinary Aircraft Generation Environment), is being developed that satisfies design

requirements defined in DREAMS and incorporates enabling computational technologies.

Keywords: life-cycle design, decision-making, design processes, Decision-Based Design,

computer architecture, information, database, schema, agent



Glossary

Design Accuracy A measure of the correctness of a design.
Agent A resource that has been modeled and wrapped for

inclusion in a distributed design environment.

DBD A paradigm that captures the notion that the principal role
Decision-Based Design of a designer is to make decisions.

DREAMS An architecture that formally supports Decision-Based
Developing Robust Engineering Design.
Analysis Models and Specifications
DSPT

Decision Support Problem Technique
A technique for implementing Integrated Product and
Process Development from a decision-based perspective.
The technique facilitates meta-design, the partitioning of a
design problem through the use of Support Problems, and
actual design, the solution of Support Problems.

Design Fidelity A measure of the completeness of a design.

IMAGE A computing infrastructure that facilitates IPPD from a
Intelligent Multidisciplinary Aircraft decision-based perspective.
Generation Environment

IPPD Embodies the simultaneous application of both system and
Integrated Product and Process quality engineering methods throughout an iterative design
Development proce ss.

NII A conglomeration of users and services on the internet.
National Information Infrastructure
Schema A collection of attributes and their instances.

Support Problem Support Problems govern the transformation of
information into knowledge. Support Problems have a
structure defined by keywords and can be used to model
an entire design timeline.

1. Introduction

A number of preliminary computational frameworks have been assembled and demonstrate the

computational technologies required for computing resource integration. 111 The development of

these frameworks have been driven by computational demonstrations rather than those imposed by

a designer performing the concurrent design of engineering systems. In the context of this paper,

the term "a designer" would also include geographically distributed Integrated Product Teams

(IPT). This distinction is important because of the additional design data and process complexity

imposed by IPT's operating in this manner. The successful use of a computational architecture

requires that the architecture be derived from those activities that occur during concurrent

engineering and incorporates the technologies found in previous architectures.

The authors have attacked this problem by defining requirements from a designer-centered

approach for defining design activities. The result of this approach is requirements that are defined

by the need for a design partitioning and solution scheme as well as a suitable information model.

It will be shown that a paradigm shift, from optimal to satisficing, will be required in terms of the



solutiontechniquesthat areappliedatparticularpointsalonga designtimeline. A genericdesign

implementation,calledDREAMS,will bedescribedthatsatisfiestheneedsof a designer. IMAGE

is a computationalinfrastructurethat is an implementationof the DREAMS architecture. This

revolutionary infrastructurecombinesthe requirementsneededto support concurrentdesign

activitiesaswell asintegratesexistingaswell asnewerenablingcomputationaltechnologies.

2. A Design Timeline

As process information is encountered earlier and design information is streamlined, a designer

performs many design activities during the simultaneous design of engineering systems. These

processes are encountered throughout a product's life-cycle, from conception to retirement/recycle.

During these processes, a designer is concerned with:

• Customer Requirements,

• System Affordability and Robustness,

• Open Systems, and

• Resource Expenditure.

These concerns can be summarized with the expression "a designer would like to do more with

less". A design architecture is required to provide the flexibility needed by a designer to address

these concerns during system partitioning and solution.

One way of modeling processes involved in system partitioning is through the use of the

Decision Support Problem (DSP) Technique. The DSP Technique provides a set of base entities

that are used by a designer to model a design timeline. These entities are systematically arranged

into multi-level networks that represent design processes. In turn, these networks are solved in

order to generate design information for decision-making. This process is described in more detail

in discussions to follow. A designer may describe current design processes based on legacy

design models (prescriptive models) or create new design models (descriptive models) and then

proceed to solve the design problem.12

There are two phases encountered by a designer when employing the DSP Technique:

• Meta-design: whereby a designer partitions a design timeline with the aid of Support

Problems; and

• Actual design, whereby Support Problems are exercised so that knowledge about a design

can be generated and decisions can be made.

During the meta-design phase, a designer explicitly models design processes using Support

Problems. Several activities that may occur during a generic design process are shown in

Figure 1. The activities are depicted in a manner consistent with a traditional design timeline. A

designer can use the DSP Technique to partition this design timeline into Support Problems. For
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example,thetimelinefrom Figure1canbepartitionedasshownin Figure2. DesignPhasesI and

Events2areidentifiedby a designerduring the partitioningprocess. A designeralsoidentifies

informationthatis to be accumulatedfor makingdecisions.For the genericcaserepresentedin

Figure2, a designerhasidentifiedfour designPhasesandthreedesignEventsthat occurduring

the Conceptual Design Phase. Realizing the impetus of IPPD, the DSP Technique allows for

Design Phases and Events to occur simultaneously.

[Figures 1 & 2 go here]

Support Problems may be formulated that represent design activities that are to occur during

design processes. A partial representation of the Support Problems that comprise the shaded

timeline partition in Figure 2 are shown in Figure 3. This schematic depicts the transformation of

the Statement of Requirements into Top Level Specifications through two design Phases and three

design Events. Notice that the schematic is multi-level. The lower sequence represents the

activities that comprise the Conceptual Design Phase. Design Events may occur simultaneously,

thus requiring the use of multidisciplinary and concurrent analysis techniques. Transmission

Entities, shown as Information blocks with a diamond-shaped border (see Table 1), encapsulate

the respective information requirements that are shared among Support Problems. After the Phases

and Events of Figure 3 have been configured into a network, a designer would go on to determine

the underlying networks that describe more detailed design processes.

[Figure 3 and Table 1 go here]

A designer would like to use a computer-based architecture to facilitate activities that occur

during design processes, namely design timeline partitioning and solution. This architecture

integrates legacy analysis programs with dynamic process modeling techniques. Repetitive and

monogamous tasks of program execution and data archiving can be automated. Thus, a designer is

free to focus more on decision-making assisted by visualization tools. The following statements

describe the functionality required of such an architecture:

• A designer performs design activities to generate design knowledge for effective and efficient

decision-making;

• A design timeline is partitioned into manageable units;

• A partitioning scheme accurately and consistently reflects design activities; and

• A means exists for solving the partitioned design timeline.

1 Design Phases are distinct stages of a design's development whose boundaries are usually characterized by changes in design fidelity.

2 A Design Event is a coincidence of design activities that are to occur so that the solution of a problem or sub problem can be achieved.



If Support Problems are to be used to partition a design timeline, they must present a consistent

model for transforming information into knowledge throughout a design's life-cycle. A consistent

model will be presented in the next section based on the notion of "satisficing" solutions)

3. Design Freedom Through Satisficing Solutions

Support Problems are applied throughout a design timeline; therefore, their nature must be such

that they can be consistently applied during a design process. Before discussing a model for

Support Problems, the following are noted about activities that occur throughout design processes:

• It is desired to minimize the impact of early design decisions on product changes, variance, and

openness through robust design techniques.

• Design costs are locked in early in the design process as design decisions are made.

• It is desired to minimize risk through product robustness.

• As a design progresses, more optimal solutions (design knowledge) may be obtained since

more is known and a design becomes less ambiguous.

• Design decisions that are made with respect to decomposed design problems must prove to be

equally as valid with respect to a recomposed system that may not be assembled until later in a

design process.

• For informed decision-making, a designer desires as much accountable design knowledge that

can be consistently drawn from design models.

• In the early stages of design, decisions are made with respect to low-fidelity, less-accurate

representations that considerably impact a design. This idea is captured in the familiar design

freedom/knowledge versus time curves shown in Figure 4: design freedom is locked in when

little is known about a design. In addition, cost is determined and risk is assumed.

The use of Support Problems provide a means of supporting these activities. Support Problems

encapsulate methods, arranged as networks, that are used to generate design information for

decision-making. As a result, design processes can be represented by a cascade of Support

Problem networks. The different types of Support Problems used by a designer to model a design

timeline and their theoretical basis are described below.

[Figure 4 goes here]

Support Problems that are employed by a designer at the first or highest level of design

activities that may occur are illustrated in Figure 2. As design processes are decomposed further,

other Support Problems may be encountered. The different types of Support Problems and their

3 A satisficing solution is one that provides a region of solutions that minhnizes the deviation between customer and manufacturer requh'ements and

design constraints, bounds, and goals.



corresponding function are outlined in Table 1. Using these Support Problems, design processes

can be represented as networks and solved.

The fundamental notion behind the use of Support Problems is as follows. Traditionally,

decisions have been based on optimality criteria imposed locally on a limited design representation.

As designs progress, either local or system level changes may cause an optimal target to shift,

rendering the design infeasible. The ideas behind optimal solutions are depicted in Figure 5.

Initially, a system may optimally satisfy problem constraints and customer requirements,

represented by peaks in the solution space shown in Figure 5. A particular problem solution is

represented by a ball in the Figure. A problem shift will cause the system to deviate from an

optimal solution, thus rendering the initial solution to be sub-optimal or even infeasible.

[Figures 5 goes here]

Early in a design process, a satisficing model is more appropriate since the model presents a

robust, open, system-oriented solution for systems with a high degree of ambiguity. The use of

satisficing solutions during initial design processes is a fundamental paradigm shift from

traditional, optimal approaches. However, such a shift is required if design processes are to be

represented across a design timeline and suitable design information requirements are to be

derived.

A satisficing solution is one that provides a region of solutions that minimizes the deviation

between customer and manufacturer requirements and design constraints, bounds, and goals, see

Figure 6. As a result, a designer can base decisions about a design on regions of plausible design

derivatives/alternatives that exist at that point on the design timeline. Moreover, a designer can

make more confident decisions than those made at the subsystem level. A pictorial aid for the

notion of satisficing solutions is presented in Figure 7. Optimal peaks are replaced by satisficing

mesas, leading to robust design solution regions. Early in the design process, a designer bases

decisions on a region of acceptable design solutions. As the region evolves throughout design

processes, particular design decisions remain valid and lie within the region of candidate solutions

(a mesa).

[Figures 6 & 7 go here]

These two models, satisficing and optimal, are encountered as Support Problems are used in

design processes. As shown in Figure 8, satisficing solutions are used early in design processes

since less is known about designs. Represented by a fading timeline, the need and use of

satisficing solutions diminishes as a design progresses. Notice also that the timeline has been

partitioned, as shown by the parallelograms. This represents a timeline that has been appropriately



modeledwith SupportProblemnetworksandallows for theuseof different solutiontechniques.

As designsarerefined,moreisknownaboutadesignand adesignerbeginsto look for solutions

thatapproachoptimal typesolutions,as seenin Figure 9. At this point, traditionaloptimization

methodsas well as newer global sensitivity approachesmay be used to aid in problem
solution._3,_4

[Figures 8 & 9 go here]

As designs are partitioned, a designer employes the use of Support Problems that adhere to this

notion of satisficing solutions. These Support Problems are word formulated using a standard

template. In the case of a Compromise Decision Support Problem (see Figure 6) , the template

contains the keywords Given, Find, Satisfy, Minimize. From this template, various equations and

algorithms are identified and a solutions is obtained. Later, a systematic approach to formulating

and solving Support Problems will be described.

4. Design Information Requirements

Having examined the requirements imposed on a design computing architecture by design

timeline partitioning needs, attention is focused on the underlying information model. Object-

Oriented Database Management Systems (OODBMS) are currently being developed or are

already in place for information storage. These systems provide facilities for object creation,

revision, distribution, storage/retrieval, and method definition. There are a number of commercial

systems that make use of distributed methods in heterogeneous computing networks. These

systems provide models for object definitions and relationships. However, these models do not

reflect the behavior required for a system to manipulate design information.

Earlier, it was proposed that one way to represent design processes would be to decompose

those processes into Support Problems as elementary units. Information requirements arise from

the use Support Problems a design partitioning scheme as well as object-oriented models:

• Information is both structured and unstructured.

• A design encompasses both form and function;

• A design decomposition is not necessarily unique;

• Design fidelity (degree of completeness) increases as a design progresses;

• A design may be represented by varying levels of accuracy at a given level of fidelity;

• Informed decision-making requires that knowledge be used in context; and

• The information model must be dynamic so that models may evolve with a design timeline.

A computer architecture will need to provide comprehensive information management that satisfies

these requirements.



5. An Information Model

Based on the dynamic information requirements described above, a generic design management

scheme can be developed that satisfies them. As represented by the icons in Figure 10,

information can be either structured (an information hierarchy) or unstructured (an information

heterarchy). The information heterarchy refers to unstructured information, or loose information.15

During design processes, some information will be structured from the heterarchy into the

information hierarchy. An example of unstructured information would include local program

variables and unexplored design variants. Heterarchical information can be represented by a

disjoint collection of objects as shown in Figure 10b.

[Figures 10 goes here]

Stephens has shown that design hierarchies can be used to represent a design space. A design

space consists of all of the temporal information encountered during design. This includes

physical product models (eg CAD geometry), process flow diagrams, product metrics,

descriptions of analysis programs, legacy data, and so forth. Notice that a design space includes

more than a description of a physical artifact. It also contains product functionality, solution

modeling, and the process of designing itself. The Form-Function-Process-Model/Temporal

design sub-spaces capture this information in a design space and are summarized in Table 2.16 The

four sub-spaces, Form, Function, Process, and Model, are populated by multiply-connected, and

therefore two-dimensional, object hierarchies. These hierarchies are 2D because the hierarchies

can be represented by simple object-based, parent-child relationships. For example, a design space

has been partitioned into these elements and is shown in Figure 10a. Furthermore, the Form sub-

space may be populated by the objects and organized into the hierarchy shown in Table 3. These

four sub-spaces along with time span nine-dimensions as given in Table 2.

[Tables 2 & 3 go here]

Looking again at Figure 10a, Process elements are formed by a Form-Function-Model triplet.

Later, it will be shown that Process elements can be implemented on the computer as software

Agents. Because Process elements explicitly contain Models, these Agents can be used by a

designer to produce design information in context. Context is provided because Agents are

scriptable and they publish their capabilities and activities. The mechanism by which this occurs

will be discussed in more detail in the implementation section. Design information provided in

context is referred to as knowledge. Therefore, a designer may interrogate design information to



determinewho producedit, when it was created,what was used to produce it, etc. Thus,

accountabledesigninformationmaybeobtainedthroughtheuseof Agents.

As designsprogress,the Information model must support increasinglevels of fidelity

consistentwith increasingcompletenessof a design. A Lifting Surface Form object

described to a tertiary level of fidelity from a structural standpoint is shown in Table 4. Each object

encapsulates one or more schemas, each potentially having different degrees of accuracy. Three

schemas that may be used to represent a Lifting Surface Form object in conceptual design are

illustrated in Table 5. The ability to support increasing levels of accuracy within the information

model is called schema evolution. The inability to support schema evolution because they use

static classes is the main weakness of present day OODBMS. However, schema evolution can be

implemented on top of these systems by having objects manage linked-lists of schemas. In turn,

schemas manage linked-lists of attributes. This approach is inherently dynamic but at a time

expense.

[Tables 4 & 5 go here]

6. DREAMS - A Design Process and Information Architecture

A generic architecture has been developed that incorporates the design process as well as

information management schemes discussed earlier. This architecture is shown in Figure 11. The

architecture has three fundamental components:

• System Partitioning and Execution: Facilities are provided that permit a designer to

partition a design problem into manageable sub-problems and for the solution of the resulting

sub-problems;

• Support Problem Definition and Solution: A consistent scheme has been developed

that allows a designer to define and solve sub-problems, which are called Support Problems;

and

• Design Management: Utilities are provided to a designer that allow for comprehensive,

object-oriented data management throughout design processes.

The interdependency between Design Processes and Support Problem Definition and Solution is

indicated by circular arrows. Formulation, Translation, and Evaluation are encountered as meta

and actual design activities occur. During all Design Processes, information exchange takes place

and is indicated in by horizontal, bi-directional arrows between Support Problems in their

intermediate stages and a Design Specification. Utilizing these three components, a designer can

manage complex system design problems throughout all design processes. This process

10



architecturehasbeengiven the acronymDREAMS(DevelopingRobust Engineering Analysis

Models and Specifications). Each of the three components will be discussed in turn.

[Figure 11 goes here]

6.1 System Partitioning through the DSP Technique
The processes involved in system partitioning can be modeled using a DSPT Palette. 12 A

DSPT Palette provides a set of base entities that can be used by a designer to model a design

timeline. A designer can use legacy design models (prescriptive models) or create new design

models (descriptive models) to describe current design processes and then proceed to solve the

design problem. The DSPT Palette implementation provides an interface for meta-design activities

(partitioning a design timeline) and actual designing (solving Support Problems). The DSPT

Palette supports the following functionality:

• A top-level Design Palette for multiple problem management;

• Additional Palettes that allow for problem decomposition;

• Information recomposition from lower Palettes to higher Palettes; and

• Multiple-user problem definition.

These functions allow a designer or an Integrated Product Team to decompose and solve a design

problem throughout a design timeline. After defining design processes in meta-design, a designer

can use the DSP Technique to generate knowledge used for decision-making by solving the

resulting Support Problems. For example, each icon in Figure 3 corresponds to an associated

Support Problem. A standard technique exists for describing and solving Support Problems and is

outlined in the next section.

6.2 Support Problem Definition and Solution

Within the DSP Technique, Support Problems are exercised by a designer to produce

knowledge about a design so that decisions can be made based on that knowledge. Support

Problems provide standard models for transforming design information into knowledge. There are

three steps required in defining and solving Support Problems:

• Formulation: The structuring of the problem statement into specific Support Problem

models;

• Translation: Associating processes, that govern the generation of information into

knowledge, with the Support Problems; and

• Evaluation: Producing design knowledge through the solution of the Support Problems.

These steps will be explained and illustrated in the sections to follow.
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6.2.1 Formulation - Support Problem

Support Problems are defined when a design process is partitioned in meta-design. Support

Problems have a defined structure given by keywords, see Figure 6. The Compromise DSP has

the following form:iS

Given: Feasible design and aspiration space

Find: Values of variables

Satisfy: System constraints, bounds, and goals

Minimize: Deviation between "what I want" and "what I can have"

Support Problems are formulated as linguistic statements stemming from design problem

statements, customer desirements, and brainstorming. As Support Problems are formulated, they

are embodied by Forms and Functions from a Design Specification. The formulation of a

multidisciplinary wing integration Compromise Decision Support Problem is illustrated in Figure

12. As shown in Figure 13, the definition of Support Problems begins with a Compromise DSP.

As Support Problems definitions are completed, knowledge about Problems increases. This can

be visualized as a cone of increasing girth.

[Figures 12 & 13 go here]

6.2.2 Translation - Math Form

Once a Support Problem has been formulated, the problem is then translated into an equivalent

Math Form. The Math Form for Phases, Events, Tasks, and Decisions are Support Problem

networks. These networks can be created automatically by using a natural language processor to

parse the linguistically formulated Support Problem. In the case of System Support Problems, the

Math Form provides the process connectivity between Forms and Functions. In this case, a

designer manually selects a suitable Form-Function-Model triplet. This triplet is a Process

element. For instance, the functions Li ft and Drag are associated with the form Wing through

the relations:

Lift = C_ . q . S (l)

Drag = C_. q o S (2)

where C_ and C_ are the respective lift and drag coefficients, q is the dynamic pressure, and S is the

wing area. As the Math Form becomes more complex, equations are typically grouped into

engineering models. In turn, models are often grouped into disciplines. Some of the traditional

aerospace disciplines that are present in the multidisciplinary wing integration problem are shown

in Figure 12. Notice that inter-disciplinary models do exist, as in the case of aeroelasticity, and

must be accounted for. The Math Form adds additional information to an existing Compromise

DSP definition as shown in Figure 13.

12



6.2.3 Evaluation - Template

Finally, the Math Form of the Support Problem can be solved. The Support Problem solution

consists of three steps: pairing the Math Form with a suitable Agent, structuring a solution

network, and solving the Problem. Agents are used by a designer to generate design information

from the expressions found in the Math Form of a Support Problem 4. As shown in Figure 12,

Agents are typically engineering analysis codes. Other Agents include expert systems, hyper-

media sources, virtual reality, and the human designer. After the Math Form and Agents have been

collected, the new form of the Support Problem is called the Support Problem Template. A

Template completes a Support Problems definition and is pictorially represented as the base of the

Support Problem cone shown in Figure 13. The notion of the SP Template is important for

modeling design processes. SP Templates represent a bridge between modeling design processes

and systematically employing Available Assets to generate the information required for those

processes.

Continuing, a solution network must be formed detailing the sequence of events required for

solution. DeMAID is a tool that assists in the ordering of analysis modules for execution. 17

Design Structure Matrices may be ordered with respect to feedback loops, time, and cost

considerations. Stettner has added to DeMAID by distinguishing both sequences and circuits as

necessary components of MDO activities. TM Moreover, Stettner has outlined a decomposition and

recomposition method for forming sequences and circuits.

Finally, the Support Problem must be solved. Decision Support In the Design of Engineering

Systems (DSIDES) is a suite of tools used to solve Support Problems. _9 Tools in DSIDES are

used to solve Selection DSPs (SELECT) and multi-level, multi-goal Compromise DSPs (ALP).

6.3 Design Specification and Heterarchy

The Design Specification Editor is a tool for comprehensive information management and

implements the notions of both information heterarchies and hierarchies. The Editor is based on an

earlier information system called DEFINE implemented as part of a Laboratory Environment for

the Generation, Evaluation, and Navigation of Design (LEGEND). _6 The Editor includes:

• Generation of Form, Function, Process, and Model hierarchies;

• Heterarchical to hierarchical object migration;

• Varying levels of fidelity;

• Schema development and evolution;

• Instance accumulation provided in context;

• Object sharing among projects and team members; and

4 Agents will be discussed in more detail in the computer implementation sections to follow.
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• An interpretiveobject-orienteddatabasemanagementsystemincludinginheritance,persistence,

memorymanagement,andobjectcondensation.

Thesecapabilitiesallow for comprehensivedesigninformationmanagementbasedon a common

productdatamodel.

7. IMAGE

A revolutionary computing infrastructure has been implemented based on the requirements

outlined earlier for the concurrent design of engineering systems. Some unique and distinguishing

features of this architecture are:

• A design partitioning process;

• A mechanism for solving Support Problems;

• A design information model;

• Information generation in context for informed decision-making;

• Efficient and cost-effective application of design resources; and

• Geographically distributed design activities.

The resulting infrastructure is called IMAGE, an Intelligent Multidisciplinary Aircraft Generation

Environment.

A diagram of the IMAGE infrastructure is shown in Figure 14. This infrastructure is

comparable to the Framework for Interdisciplinary Design Optimization (FIDO), Affordable

Systems Optimization Process (ASOP), and other efforts in the development of underlying

computing technologies. 11,20 However, the IMAGE infrastructure is designed to explicitly support

general design activities and an information model within an accountable design context. This

explicit support for design of complex engineering systems is a notable enhancement of this

architecture over others. These design requirements dictate the implementation strengths of the

synergistic information and process model described earlier.

[Figure 14 goes here]

As shown in Figure 14, IMAGE has the following features:

14



• Designer Activities: A designer partitions a problem into activities for solution as well as to

provide comprehensive information management;

• Available Assets: A variety of design resources are provided to aid in the generation of

design knowledge. Resources range from object-oriented databases to CAD packages;

• Agent Collaboration (indicated by Models and Wraps): A generic toolkit allows resources

to be incorporated into a design infrastructure with minimal effort by the end user. Notice that

the incorporation of a model within the toolkit allows for knowledge to be generated in context

allowing a designer to interrogate knowledge for the who, what, where, when, and how the

information was created.

• Computational Backplane: Components that are required for objects to operate in a

distributed, homogeneous computing environment are included in a transparent, underlying

infrastructure.

The characteristics of each component of the architecture will be outlined in the following sections.

7.1 Designer Activities

An implementation of the DSP Technique has been integrated into IMAGE and is adapted from

earlier work done on a Design Guidance System (DGS). 15 This implementation compliments

other process-related works in model creation and allows for DSPT Palettes to be generated (meta-

design) and solved (process of designing).21 An IMAGE root window with two Palettes visible is

shown in Figure 15. The Palettes represent the highest level design processes for a High Speed

Civil Transport Design. Also shown in the Figure is the main window for IMAGE. The window

contains drag-and-drop facilities for data storage, printing, and help. The buttons located to the

right in the window are used to (de)iconify Palettes and Design Specification browsers.

[Figure 15 goes here]

Combined with Palette activities, a Design Specification Editor is used to appropriate

information activities. The Editor incorporates ideas discussed earlier, including schema evolution,

fidelity support, automatic context generation and instance accumulation. An IMAGE root window

depicting parts of this Editor is shown in Figure 16. The Form, Process, Model, and Heterarchy

browsers are visible. In the browsers, design objects are created and associated with each other. A

schema editor is also shown in the Figure. The schema editor allows for multiple schemas with

their associated attributes to be defined. If this window were expanded, attribute instance values

and their accumulation could be visualized. Figures Figure 15 and Figure 16 show the main user

interfaces to IMAGE. The other sections of IMAGE described in sections to follow do not require

user interfaces. Customizeable viewers for data and problem execution can be created to support

those activities but are not required.

15



[Figure 16 goes here]

7.2 Available Assets

Available Assets are the second feature of the IMAGE infrastructure shown in Figure 14.

These Assets, or resources, are the entities that are inevitably responsible for carrying out design

methods. The Assets can be categorized as databases, visualization tools, optimization routines,

geometric modelers, and algorithmic and heuristic simulation. The most familiar form of a

resource is the computer program. A designer directs computer programs to calculate some desired

information based on pre-determined algorithmic procedures. These programs may be combined

in automated analysis modules that may incorporate heuristic controllers. Some examples of

computer programs used by the aerospace industry include: ASTROS (a structural optimization

code), FLOPS (an aircraft convergence code), ACSYNT (an aircraft convergence code), CONMIN

(an optimization package), CATIA TM (a three-dimensional geometric modeling, simulation and

analysis package), and ORACLE TM (a relational database).

7.3 Agent Collaboration

Agents are one of the key enabling technologies that bind IMAGE together, as shown in Figure

14. Agents allow for the meaningful creation of design knowledge by Available Assets (resources)

during Design Activities. As discussed earlier, the information model used in the IMAGE

implementation incorporates the use of Process elements. The instantiation of these elements as

Agents results in knowledge generation in context.

The creation of an Agent requires three components: a Resource, a Model, and a Wrap.

Resources are the Available Assets discussed in the previous section. Models have two

components: the Process Model and the Implementation Model. The Process Model is the model

incorporated into the process element. The model may be physical or intellectual. Models are

typically based on mathematical formulations, engineering principles, or geometrical constructions.

The Process Model has typically been discarded or included only in external reference

documents The use of Agents allows for Process Models to be explicitly defined. For example, a

solids construction model used to represent complex solids in CATIA TM is shown in Figure 17. In

words, the geometric process model describing the volume transformation would be:

In a volume transformation, an object is represented by an approximate solid computed

directly from the exact volume. A volume is constructed from faces which, in turn, are

defined by the edges that enclose simple or multiply connected regions of planar or

complex surfaces.
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[Figure 17 goes here]

The Implementation Model, the second model component, captures the execution

characteristics of the resource. Some of the items that are contained in the implementation model

include: variable definition, file descriptions, units, execution characteristics, and platform

dependencies.

A Wrap enables Agents to work in a collaborative environment. A Wrap is responsible for

publishing models so that designers may employ the services of resource contained within,

communicating information among resources while conforming to protocols and data exchange

standards, and negotiating its services with other agents. In all a Wrap has six components: a

Communications Interface, a Protocol Filter, a Model Interpreter, a Resource Interpreter, the

(Graphical) User Interface, and a Low Level Compliance layer.

A generic scheme has been proposed that allows for Agents to be developed from existing

available assets or new Agents to be developed that incorporate the functionality of new design

environments and computing characteristics. References [22, 23] summarize generic Agent

implementation schemes.

7.4 Computational Backplane

Design Activities utilize Available Assets in an accountable fashion through the collaborative

use of Agents. The Computational Backplane allows for this process to occur using existing

computer facilities, see Figure 14. The underlying architecture is a subset of what has come to be

known as the National Information Infrastructure. The NII is simply a conglomeration of users

and services on the Internet. Users range from end-users performing design functions to

developers providing simulation services. Services range from information dissemination, such as

on the WWW, to underlying transport mechanisms such as TCP/IP 5. In addition, the NII also

provides direction for new computing technologies such as fine-grained and parallel computing.

The wrap component of the Agent allows for collaborative efforts to occur through an intimate

interface with the NII. Proper integration requires that the following services be standardized and

made available: communications support, protocols, data representations, and ontologies. The

NII incorporates rapidly expanding and evolving computing facilities. IMAGE has been designed

so that new technologies may be incorporated and tested within the architecture without re-

configuration.

5 Transmission Control Protocol / Intemet Protocol
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8. Future Directions

The computer architecture requirements for designing engineering systems have been outlined

in this paper and addressed by a generic framework called DREAMS. In turn, this framework is

being implemented on the computer as a design system called IMAGE. Two example cases are

currently being implemented in IMAGE in order to assess the success of addressing the

aforementioned design requirements. These two cases include a Simplified HSCT24E

multidisciplinary design problem and a General Aviation Aircraft (GAA) open engineering system

design.

8.1 HSCT24E

A simplified HSCT24E test case was implemented in FIDO. During its execution, a simplified

HSCT was determined from a baseline model based on weight minimization and appropriate

constraints. Execution was done on the distributed framework as controlled by an executive. This

problem is being incorporated into IMAGE in two parts. First, the analysis resources in FIDO are

being incorporated into IMAGE as agents. Second, the optimal problem is being reformulated as a

Compromise Decision Support Problem.

8.2 GAA

The design of a family of GAA based on the 2, 4, and 6 seater aircraft configurations was

performed using DSIDES directly linked to GASP, a General Aviation Synthesis Program. 24 A

ranged set of top-level design specifications for the family of GAA was developed using a multi-

objective Compromise Decision Support Problem in combination with Taguchi's robust design

techniques and response surface models. 25 This problem is also being incorporated into the

IMAGE framework in two parts. First, the response surface models and analysis resources from

GASP are being incorporated into IMAGE as agents. Second, a common baseline model for the

family of GAA is found by using DSIDES to find satisficing solutions for the GAA Compromise

Decision Support Problem.
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1. Conceptual Design

1.1 Define Requirements

1.2 Establish Baseline

1.3 Generate Alternative.,

2. Preliminary Design

3. Detailed Design

4. Manufacture and Supporl

Figure 1. A Traditional Design Timeline
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1. Conceptual Design

2. Preliminary Design

3. Detailed Design

4. Manufacture and Support

I 1.1 Define Requirements
1.2 Establish Baseline

1.3 Generate Alternatives

l i.
iii.

Statement of Requirements

Conceptual Design Matrix

Top Level Specification

[ P ]
[ P I

[ P I
I P I

Figure 2. A Partitioned Timeline Corresponding to Figure 1
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Preliminary Top Level
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Statement of Define Conceptual Alternatives Top Level
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Figure 3. Support Problem Network Corresponding to Figure 2 (See Table 1)
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Figure 4. Design Freedom and Knowledge vs. Time [26]
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Figure 5. An Optimal Model
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The Compromise DSP and Satisficing Solutions
In the Compromise DSP, the set of system constraints and bounds define

the feasible design space and the sets of system goals define the

aspiration space. For feasibility, system constraints and goals must be

satisfied. A satisficing solution is that feasible point that achieves the

system goals to the extent that is possible. The solution to this problem

lepresents a tradeoff between that which is desh'ed (as modeled by the

aspiration space) and that which can be achieved (as modeled by the

design space), see figure below. It is noted that the aspiration space

(defined by the goals) is unlikely to overlap the feasible design space

em'ly in a design thneline. At some point on a design thne line, as a

design matures, the aspiration space will overlap the feasible design

space.

The mathematical fonn of a Compromise DSP is given to the right. Each

goal has an achievement function Ai(X_ a tm'get value G d t
, + . . . , 1, _ _woassociated deviation vmiables, di and'_ which indicate tliea_eCvlanon

from fue tm'get. The range of values of fuese deviation vm'iables depend

on the goal kself. The product constraint di+ * di 0 ensures that at least

one of the deviation vm'iables for a pm'ticula" goal will always be zero.

The goals in a multidisciplinmy system are not equally important to a

decision maker. To effect a solution, on the basis of prefelence, the goals

may be rank ordeled into priolity levels. A solution which minfinizes all

unwanted deviations should be sought.

Aspiration
Spa_

x2De iafion Function

Adapted From

Given

An alternative to be hnpmved tfu'ough modification.

Assumptions used to model the domain of interest.

The system pm'mneters

n number of system vmiables

p+q number of system constraints

p equality constraints

q inequality constraints

m number of system goals

gi (X_ system constraint function

fk(di) function of deviation vm'iables to be minfinized at

priolity level for Pleemptive case

Find

Xi i 1, ...,n

di+, d i i 1, ..., 111

Satisfy

System constraints (linear, nonlinear)

g_(X) 0 i 1..... p

gi(X) 0 i p+l ..... p+q

System goals (linear, nonlinear)

Ai (X_+ d i di+ = Gi i= 1,...,m
Bounds

Xfinin Xi Ximax i 1, ...,n

di ,di+ 0 i 1, ..., m

di • di+ 0 i 1, ..., m

Minimize

Case a: Preemptive (lexicographic minfinum)

Z [ fl(di , _+) ..... fk(di , d_+ )]

Case b: Archfinedian

Z EWi(d_ +d_+); EWi 1;Wi 0

Lewis, K, and F. Mistime, "Designing Top Level Ah'cl_ft Specifications: A Decision Based Approach to a Multi Objective, Highly

Constrained Problem," 36th AIAA/ASME/ASCE/AHS/ASC Srructmes, Structural Dynamic, and Materials Cotffel_nce ans AIAA/

ASME Adpative Srructmes Formn, New Orleans, LA, April 10 13, 1995. AIAA 95 1431 CP.

Figure 6. Compromise Decision Support Problem
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Problem

Satisficing
Solution

System

Problem
Deviation

Solution
Remains Valid

Figure 7. A Satisficing Model
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Design Timeline

Figure 8. Satisficing Solutions Early in Design Processes
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Design Timeline

Figure 9. Optimal Solutions Later in Design Processes
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a)Information Hierarchy b) Information
Heterarchy

Figure 10. Design Information

31



/

m

System Partitioning
and Execution

Support Problem
Definition and Solution

Design
Management

Decision Support
Problem Technique

Formulate --> Translate --> Evaluate Design Specification
and Heterarchy

Figure 11. DREAMS Architecture for Supporting a Designer's Activities
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Figure 12. Multidisciplinary Wing Integration Compromise Decision Support Problem
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Figure 14. IMAGE Infrastructure

35



Workstation Root Window

Main Window

Top Level Palette

i ii ii i ii i i ii ii ii i

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii   iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii  iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Palette With

Network for HSCT design

Figure 15. IMAGE Root Window With Palettes
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Figure 16. IMAGE Root Window With Browsers
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Figure 17. CATIA Solid Representation
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Table1. NetworkIcons

Support Icon
Problem

Phase []

Event []

Task []

Decision []

System (_)

Transmission Icon

Entity

Information

Function

Stages of
development

Coincidence of

design activities

Activity to be
accomplished

Evaluation of a

design based on
its content

Actual design
components
which may be real
or abstract

Function

Design information
commtmicated

between Support
Problems
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Table 2. Design Hierarchy Entities

Category Function Dimensions

Form A mechanism by 2
which a design
can perform an
activity

Function An assigned 2
activity a design
is to perform

Process 2The means by
which a
function is

performed by a
form

Model An idealization of 2

a process
Time Either real or 1

event-based

Z=9
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Table3. FormObjects

Objects Hierarchy
-Aircraft

-Lifting Surface

-Vertical Stabilizer

-Horizontal Stabilizer

-Propulsion Unit

-Centerbody

_Aircraft

-Centerbody

-Lifting Surface

_Propulsion Unit

-Vertical Stabilizer

_Propulsion Unit
-Horizontal Stabilize_

Table 4. Increasing Fidelity for a

Lifting Surface

_Lifting Surface

_Inboard Wing Box

_Spars

_Ribs

_Outboard Wing Box

_Spars

_Ribs
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Table5. ThreePossibleSchemasfor
DescribingaLifting Surface

Schema 1 Schema 2 Schema 3

Root Chord

Span
Taper Ratio
Root t/c
Tipt/c
Sweep
Dihedral
Twist
NACA Profile

Aspect Ratio
Span
Taper Ratio
Root t/c
Tipt/c
Sweep
Dihedral
Twist
NACA Profile

(X1,Y1)
(X2,Y2)
(X3,Y3)
(X4,Y4)
(X5,Y5)
Root t/c
Tip t/c
Dihedral
Twist
NACA Profile
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